Exercicio Pratico: Sistema de Processamento de Pagamentos
Contexto

Vocé foi contratado para desenvolver parte de um sistema de processamento de
pagamentos para uma plataforma de e-commerce. A empresa deseja que o sistema
seja flexivel e facilmente extensivel, de modo que novos tipos de pagamento possam
ser adicionados sem a necessidade de alterar o cddigo existente.

Atualmente, o sistema deve processar pagamentos via cartao de crédito e
pagamentos via Pix, mas espera-se que, no futuro, seja necessario incluir outras
formas de pagamento (como boleto, PayPal, criptomoedas etc.).

Objetivos de Aprendizagem
Com este exercicio, vocé devera demonstrar:
¢ Uso de interfaces e classes abstratas para definir comportamentos genéricos;

¢ Uso de polimorfismo e ligagdo dindmica para permitir que o sistema trate
diferentes tipos de pagamento de forma uniforme;

¢ Aplicacdo dos principios de reuso, extensibilidade e design for change.

Especificagao
1. Interface Pagamento
o Declare uma interface chamada Pagamento com os seguintes métodos:

public interface Pagamento {

O

o void autorizarPagamento(double valor);
o void realizarPagamento(double valor);
o }

2. Classe Abstrata PagamentoBase

o Crie uma classe abstrata chamada PagamentoBase que implemente a
interface Pagamento.

o Essaclasse deve conter atributos comuns a todos os tipos de
pagamento, como:

o protected String idTransacao;



o protected double valor;

o Inclua um método concreto gerarRecibo() que imprime informacdes
basicas sobre o pagamento.

o Inclua métodos abstratos que cada tipo de pagamento precisara
implementar:

o protected abstract void validarDados();
3. Classes Concretas
o Crie duas classes concretas:
= PagamentoCartaoCredito
= PagamentoPix

o Ambas devem herdar de PagamentoBase e implementar os métodos
abstratos e da interface.

o Em PagamentoCartaoCredito, simule a validacdo de nimero do cartdo e
autorizacao de limite.

o Em PagamentoPix, simule a validacdo da chave Pix e a confirmacao
instantanea.

4. Classe de Teste: ProcessadorDePagamentos

o Crie uma classe ProcessadorDePagamentos com um método
processarPagamentos(List<Pagamento> listaPagamentos).

o Esse método deve percorrer a lista e chamar:
o pagamento.autorizarPagamento(valor);

o pagamento.realizarPagamento(valor);

o pagamento.gerarRecibo();

o Note que nao deve haver if ou instanceof — o comportamento deve ser
definido dinamicamente via polimorfismo.

5. Teste o sistema
o No método main, crie uma lista com diferentes tipos de pagamento:
o List<Pagamento> pagamentos = new ArrayList<>();
o pagamentos.add(new PagamentoCartaoCredito(...));

o pagamentos.add(new PagamentoPix(...));



o Passe essa lista para o ProcessadorDePagamentos e observe a ligagao
dindmica:
o método correto sera chamado em tempo de execugao, conforme o
tipo real do objeto.

Q Extensdo (Design for Change)
Sem alterar o cédigo do ProcessadorDePagamentos, adicione uma nova classe:

¢ PagamentoCriptomoeda, por exemplo.
Observe que ela podera ser integrada facilmente ao sistema — basta
implementa-la e adiciona-la a lista.
Esse é o beneficio direto da ligagao dinamica e do polimorfismo.



