
💻 Exercício Prático: Sistema de Processamento de Pagamentos

Contexto

Você foi contratado para desenvolver parte de um sistema de processamento de

pagamentos para uma plataforma de e-commerce. A empresa deseja que o sistema

seja flexível e facilmente extensível, de modo que novos tipos de pagamento possam

ser adicionados sem a necessidade de alterar o código existente.

Atualmente, o sistema deve processar pagamentos via cartão de crédito e

pagamentos via Pix, mas espera-se que, no futuro, seja necessário incluir outras

formas de pagamento (como boleto, PayPal, criptomoedas etc.).

Objetivos de Aprendizagem

Com este exercício, você deverá demonstrar:

 Uso de interfaces e classes abstratas para definir comportamentos genéricos;

 Uso de polimorfismo e ligação dinâmica para permitir que o sistema trate

diferentes tipos de pagamento de forma uniforme;

 Aplicação dos princípios de reuso, extensibilidade e design for change.

Especificação

1. Interface Pagamento

o Declare uma interface chamada Pagamento com os seguintes métodos:

o public interface Pagamento {

o void autorizarPagamento(double valor);

o void realizarPagamento(double valor);

o }

2. Classe Abstrata PagamentoBase

o Crie uma classe abstrata chamada PagamentoBase que implemente a

interface Pagamento.

o Essa classe deve conter atributos comuns a todos os tipos de

pagamento, como:

o protected String idTransacao;

o protected double valor;

o Inclua um método concreto gerarRecibo() que imprime informações

básicas sobre o pagamento.

o Inclua métodos abstratos que cada tipo de pagamento precisará

implementar:

o protected abstract void validarDados();

3. Classes Concretas

o Crie duas classes concretas:

 PagamentoCartaoCredito

 PagamentoPix

o Ambas devem herdar de PagamentoBase e implementar os métodos

abstratos e da interface.

o Em PagamentoCartaoCredito, simule a validação de número do cartão e

autorização de limite.

o Em PagamentoPix, simule a validação da chave Pix e a confirmação

instantânea.

4. Classe de Teste: ProcessadorDePagamentos

o Crie uma classe ProcessadorDePagamentos com um método

processarPagamentos(List<Pagamento> listaPagamentos).

o Esse método deve percorrer a lista e chamar:

o pagamento.autorizarPagamento(valor);

o pagamento.realizarPagamento(valor);

o pagamento.gerarRecibo();

o Note que não deve haver if ou instanceof — o comportamento deve ser

definido dinamicamente via polimorfismo.

5. Teste o sistema

o No método main, crie uma lista com diferentes tipos de pagamento:

o List<Pagamento> pagamentos = new ArrayList<>();

o pagamentos.add(new PagamentoCartaoCredito(...));

o pagamentos.add(new PagamentoPix(...));

o Passe essa lista para o ProcessadorDePagamentos e observe a ligação

dinâmica:

o método correto será chamado em tempo de execução, conforme o

tipo real do objeto.

💡 Extensão (Design for Change)

Sem alterar o código do ProcessadorDePagamentos, adicione uma nova classe:

 PagamentoCriptomoeda, por exemplo.

Observe que ela poderá ser integrada facilmente ao sistema — basta

implementá-la e adicioná-la à lista.

Esse é o benefício direto da ligação dinâmica e do polimorfismo.

