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Abstract—The process of analyzing images from Minimally
Invasive Procedures suffers from some problems related to the
conditions of these images. Among these problems, it is possible to
notice that the illumination issues are one of the most complicated
to solve, as these surgeries are performed through small incisions
in the human body. Therefore, the present project presents a
model based on a deep neural approach that is able to improve
low-light surgical images, making them more optimized for
analysis processes performed by human surgeons or assistant
robots.

Index Terms—Minimally Invasive Procedures, Autoencoders,
Image Enhancement, Low-Light Images, Laparoscopy.

I. INTRODUCTION

Minimally Invasive Procedures (MIPs) have become noto-
rious in the modern surgical medicine field because of some
factors that can benefit the patient, specially when this category
of surgery is compared to the conventional open surgery
procedures. Among these beneficial factors, it is possible to
focus on the decrease of the hospital stay and the reduction of
pain and postoperative traumas [1]. Over the last three decades,
these procedures have gained prominence in the medical field,
including new techniques and using vanguard technologies to
assist all the medical team. The use of robots for automation of
some procedures and the remote surgery have been constantly
influencing the development of these techniques in comparison
with the other ones which are conventionally used.

In addition, robotic assistants are becoming more successful
than human assistants in the execution of surgical tasks be-
cause of their improved precision when doing some routines.
There are two specific categories of assistant robots that can
help in MIPs. The first is a robot that is able to do some basic
tasks, being specially focused on helping the surgeon, assisting
with the application of suture, incisions and anesthesias [2].
The robotic intervention can be done in an automatic way,
where the robot can execute all the tasks independently, or in
a supervised way, where a surgeon can guide the robot. The
other category of robot is only responsible for the control of
the microcamera that is inserted inside of the patient’s body,
allowing the surgeon to follow the procedure in some external
screen [3]. To accomplish this task, there are some tracking
algorithms that are implemented into the robots’ logic, which
are mainly focused on following the medical instruments used
in the procedure.

Today, robots focused on the microcamera control are being
highly used when compared to the other surgical robot types.
Computer Vision algorithms are used to help the locomotion
of these robots. To follow the medical instruments that are
operated by a human surgeon, these robots need to know
the area that is occupied by these tools, mapping the entire
location of them in real time [4]. This map is acquired using
two main techniques. The first of them is known as object
tracking, which is characterized mainly by the process of
identifying the most relevant points of an object, such as
contours or regions of interest (ROIs), applying image filters
to outline the desired object and following its trajectory in a
certain environment. The second technique is known as image
segmentation, which is characterized by the identification and
mapping of image segments that identify an object. These
segments are processed as pixel maps, building a polygon over
the area of interest.

Among the current automatic algorithms for object tracking
and image segmentation, the ones that stand out in the state-
of-the-art are those focused in deep learning processes, which
are based in the use of neural models with a large number
of layers, providing an increased level of abstraction on
multidimensional data [5]. One advantage of these models is
that they have a considerable good performance when dealing
with huge training datasets containing multivariational data,
which optimizes their predictive power. However, there are
some challenges when using these types of algorithms in the
surgical field, being possible to notice that these methods need
accurate images, without errors caused by external factors and
containing a precise information, as they are acting in high risk
processes that demand a certain level of quality. Errors caused
by low-lighting, focus and movement blur can make their
performance decrease and cause other errors that can be life
threatening to the patients that are being operated. Although
medical centers use high quality visual equipments, any error
due to these factors related to the environment may disrupt
the surgical routine. Therefore, the use of automatic image
enhancement algorithms in order to optimize the quality of the
analyzed frames appear as an aid to these tracking algorithms.

During the image preprocessing stage, enhancements al-
gorithms are capable of applying optimization techniques on
images to improve some details for a particular context [6].
In this process of improvement, the focus of the algorithm is



to perform a cleaning of all possible imperfections present in
a certain frame. Thus, it is possible to generate images with
a better quality and a reduction of errors as the focal loss,
noise and illumination failures. These changes can be done by
using some concepts related to matrix convolution techniques,
where the focus is to obtain an optimized filter capable of
modifying the image for a certain state. Generative algorithms
combined with adversarial learning approaches have been used
to find the optimal filter, enhancing the image for a specific
context [7]. According to that, the possibility of combining
these algorithms to other object tracking routines is observed,
improving the image quality through an enhancement method.

Thus, this project presents an artificial neural network model
based on an autoencoder architecture to automatically generate
filters that are capable to enhance images, removing errors
in surgical images caused by lighting failures that can affect
the performance of algorithms focused in medical instrument
detection and the image analysis that is done by medical
and surgical professionals. Two experiments were executed
with the developed model, including an evaluation of its
performance and its comparison with a model based on a
statistical approach, aiming to analyze the performance of the
proposed image enhancement method and the quality of the
improved images.

The main contributions of the proposed solution are:

1) An artificial neural network model based on an autoen-
coder approach to enhance frames captured during MIPs.

2) A dataset focused on the automatic low-light image
enhancement of MIPs with data composed by different
levels of illumination on different surfaces on the interior
of the human body.

3) A reduction of lighting errors present in surgical images
in order to optimize the execution of assistant robots,
especially focusing on those responsible for controlling
micro-cameras inserted into the patients’ bodies, and the
analysis of the frames during the surgeries that is done
by human surgeons.

4) A comparison of the developed neural model with
another model available in the state-of-the-art of image
enhancement, which is based on statistical approaches.

This document is organized as follows: Section II presents
the theoretical background that was necessary for the develop-
ment of this project, describing the state-of-the-art of the areas
focused on MIPs, deep learning and image enhancement. Sec-
tion III describes some related works that contain approaches
similar to this project. The proposed solution is presented in
Section IV, including the description of its architecture and the
challenges that were faced during its implementation. The set
of tests performed and the results obtained are presented and
cataloged in Section V. Lastly, Section VI concludes this paper
by listing the obstacles that were found during the project and
describing some future works.

Fig. 1. Thoracoscopic procedure performed with micro-camera. [9]

II. THEORETICAL BACKGROUND

A. Minimally Invasive Procedures

Compared with conventional open surgeries, or non-invasive
surgeries, MIPs appear as a way to reduce some types of
damage caused by these alternative surgical methods. One
of the main reasons that is associated with this damage
mitigation is the reduction of the size of the incision made in
the patient’s anatomy, which allows physicians to work with
smaller openings, requiring only small fissures through which
the laparoscopic instruments will be inserted [1]. Because of
this advantage, it is possible to obtain a set of benefits, such as
reduction of postoperative pains, bleeding and inflammation,
including a more pleasant aesthetic result for the operated
region.

The history of these methods dates back to the early twen-
tieth century, where some devices were invented to perform
procedures in the pelvic region and gastrointestinal system
with the use of the cystoscope and the first laparoscopes [8].
After the evolution of these mechanisms, MIPs have started
to become popularly studied in the state-of-the-art of surgical
medicine in some medical centers on the United States and
Europe, specially in the 1980s. Other medical techniques were
developed after the inclusion of technologies that were capable
to assist these procedures, easing the process through the years.

Among the main types of minimally invasive surgeries, it
is possible to identify their use in cardiac, gastrointestinal,
gynecological, vascular and thoracic procedures (as shown
in Figure 1) [10], [11]. These different types of surgical
procedures differ depending on the area where the surgery
is performed, being categorized as endoscopic, laparoscopic,
arthroscopic and retroperitoneoscopic procedures. In general,
all of these procedures fit into the concept of endoscopy,
which involves the use of a camera mounted on a platform
or device that provides an internal view of the patient’s body
without the need for wide incisions. However, laparoscopy is
mainly characterized as an endoscopic procedure performed
in the abdomen region. The procedures of arthroscopy and



Fig. 2. da Vinci, surgery robot used in image-guided laparoscopic procedures.
[14]

retroperitoneoscopy are focused on surgeries in the regions of
joints (e.g. knees and shoulders) and peritoneum (i.e. adrenal
regions or kidneys), respectively.

The laparoscopic procedure is executed with the help of
an instrument known as the laparoscope. This instrument is
composed by a thin tube containing a camera with a support
for lighting [12]. A small incision is done in the patient’s body,
which is used as a region for the insertion of the laparoscope,
allowing the medical team to visualize the operated area.
Carbon dioxide is used to inflate the area, increasing the
distance between the internal organs and the patient’s skin,
which can assist the insertion of the instrument and provide a
larger space for the movement and execution of the operation.

Despite the high range of applications of these procedures in
surgeries, not all the patients are qualified to perform some cat-
egories of MIPs. There are some pre-operative conditions that
can prevent the patient from becoming fitted for the surgery,
such as high body mass index, anatomic incompatibility in
the operated area or previous operations that led the patient to
obtain abdominal adhesions (especially in the case of surgeries
in digestive organs) [13]. However, it has been observed that
these procedures have been convenient for an optimization in
the necessary operative tasks on the patients who are able to
perform these types of operations.

After the creation of telemanipulators in the 1990s, robots
have began to be inserted into the surgical field as assistants
during the operative procedures. In the beginning, they were
used mainly for cholecystectomies, which are characterized
as surgeries focused on gallbladder removal [15]. Designed
to extend the skills of human surgeons, enhancing their tactile
feedback, dexterity and coordination of the instruments, robots
have allowed the evolution of MIPs to a new level, where
an increase in surgical accuracy and a reduction of possible
failures caused by human beings is clear. Nowadays, robots
like da Vinci (Figure 2) are examples used in MIPs in various
hospitals and medical institutes around the world [16].

As tools that have enabled the evolution of surgical pro-
cesses guided by images and videos, these robots have facil-
itated the execution of surgical telementoring and telemanip-

ulation. In the case of da Vinci, a surgeon is able to operate
it through a control terminal equipped with tactile controllers.
These controllers are capable of sending motion signals to four
robotic arms and a stereoscopic camera that are able to aid the
surgery and enable the dissection of internal organs remotely.
Being created in 2000 and focused on enabling long distance
telemanipulated surgeries, da Vinci was developed in order
to evolve conventional laparoscopic procedures, allowing the
surgeon to perform the surgery with improved motion skills
due to the sensors included in the robotic arms, and achieving
some satisfactory results in thoracic, vascular (bypass proce-
dures) and oncological procedures.

Other examples of assistant robots have appeared in the
medicine field over the last years. Projects as the AutoLap
device [17], showed in Figure 3, which are becoming relatively
popular in the state-of-the-art of robotic surgeries, are focused
on controlling only the video-camera that is used during
the operation, not playing the role of interacting directly in
the operative processes. Conventionally, these cameras are
controlled by one or more human assistants. Therefore, au-
tomating video camera control facilitates this process, allowing
only one human, the main surgeon, to perform the procedure.
To accomplish this, the robot must initially locate the positions
of the medical instruments used by the surgeon and, as they
are moved, follow them to provide a better view of the area.

Laparoscopy, such as other types of image-guided surgeries,
was one of the main categories of surgical procedures that
improved the field of surgical technologies. Previously, only
humans were able to perform the task of assisting the main
surgeon with the control of the camera that provides the vision
of the operated area. However, methods have been developed
to make this process fully automated, as it is seen in the case of
AutoLap. Initially using stereotactic interventions, tomography
and sonic/optical localization, images were used as a way
to enable the physician to be guided during the procedure
in the patient’s internal organs without the need for cuts or
incisions with a large width. However, the demand for a
larger number of images to perform real-time procedures led
to the use of high performance cameras. The use of computer
vision, augmented reality and 3D rendering techniques in these
procedures allowed the evolution of this area to a new level.

In the case of AutoLap, several differences arise in com-
parison to conventional robot assistants that control cameras.
These robots are usually oriented through voice and head/eye
movements. However, AutoLap allows this entire process to
be automated through image analysis. Recent studies show
a satisfactory stabilization of the tool, as well as security
improvements during its use, but there is a lack in some
image optimization features that can compromise the perfor-
mance during its execution [17]. Among the compromising
characteristics, it is possible to indicate that the quality of
the images analyzed has an important impact on the way
that the robot moves, as illumination and motion noises can
bring some performance issues. Because of this problem, the
difficulty that this type of technology has to be inserted into
the current market is increased, influencing directly on how



image-oriented surgeries proceed and making it impossible to
increase the use of robots such as the AutoLap. Algorithms or
technologies focused on improving the quality of the analyzed
images become necessary for the evolution of these robotic
assistants.

B. Deep Learning

The classical artificial intelligence methods have been pass-
ing through some significant changes since the creation of
machine learning processes oriented by neural models. Unlike
the models that follow the statistical learning paradigm, such
as Markov chains and bayesian inferences, the way how
neural models are built is strongly influenced by the natural
organization of the nervous system, having a group of neuron
layers that can abstract the evaluated information to a recog-
nizable and normalized pattern [5]. Being initially recognized
as supervised learning techniques, these models have actually
evolved and have included some other learning categories,
such as the non-supervised learning processes, even covering
some generative models, where it is possible to autonomously
generate new samples of data from an initial dataset with
encoding and decoding methods.

However, the conventional neural models, which are com-
monly known as artificial neural networks, used to have some
issues caused by the expansion of the training datasets or the
increase on the dimensions of the data, being unable to achieve
some data abstraction levels, including the examples where the
data required tensor manipulation, as in the case of images.
To solve this problem, the deep neural networks were created.
These networks are similar to the conventional ones, but they
have different types of categories of layers, where each of them
has a specific purpose during the process of abstraction that
is executed by the network, and include a significant increase
in the number of the layers [5].

Created in the 1990s by the computer scientist Yann LeCun,
who is also the main responsible for the creation of the first
convolutional neural network (CNNs) model, the architecture
LeNet-5 was the first artificial neural network topology to

Fig. 3. AutoLap, assistant robot that is capable to control the camera during
laparoscopic procedures [17].

present a deep learning process [18]. Being used for hand-
written and printed digit recognition, this architecture used a
group of convolutional, fully-connected and pooling layers,
abstracting the images to feature maps until the analyzed
data become an uni-dimensional vector to be processed by
a softmax function to classify the digits that are present in the
evaluated image. An example of a CNN architecture for image
classification is shown in Figure 4.

In that time, these networks were mainly used in computer
vision processes, having a good performance, but requiring a
significant amount of computational power and huge datasets
that were not easy to obtain. Because of this situation,
the support vector machines (SVMs) were more used than
CNNs at that time, specially in trivial classification problems.
Nonetheless, since 2012 [19], the interest in these models were
restored as the state-of-the-art has experienced an exponential
improvement in its performance when used on large collec-
tions of data.

The use of convolution in these models have provided a
good advance on how artificial neural networks learn, as this is
the main operation that is executed inside of the convolutional
layers. Largely used by conventional image filters, these oper-
ations are capable of transforming a multidimensional data to a
tensor known as a kernel and executing an operation based on
linear algebra that is much faster than the matrix multiplica-
tion. While conventional neural networks use techniques based
on vector and matrix multiplication to update their weights,
convolutional networks use convolution in at least one of their
inner layers [5].

The kernel can be understood as a low-dimension matrix
(commonly represented by square matrices of order 2 or 3)
that is used to scan the analyzed tensor, doing a mathematical
operation on each of the item subsets of the original tensor
and generate a feature map as output. This method is used by
the CNNs as a way to abstract the input tensor through the
layers in a more efficient way.

s[t] = (x ∗ w)[t] (1)

In the Equation (1), the function s in a time period t
will generate a feature map based on the x values, which
represent the input tensor, and w, which is the kernel. There are
different types of convolution and, depending on these types,
the dimension of the input can be completely changed after this
operation. In the case of a pooling or a up sampling process,
a summarized statistic of the analyzed region is generated,
resizing the input tensor to a smaller size during the pooling
and to a bigger size during the up sampling. In this sense, each
type of convolutional operation has its own purpose and the
combination of these operations in a network will determine
how the output will be after this process.

The usage of convolution on these layers allows the network
to apply a group of relevant filters on the data abstraction
and, because of the decrease of the number of parameters
caused by the kernel, there is an improved adaptation of the
dataset and smaller chance of occurring errors caused by a



Input Convolutional Layer Pooling Layer Fully-Connected
Layer Output

Fig. 4. Example of a CNN applied to an image classification problem. The input is processed by a convolutional layer that sends its output to a pooling
layer. During the pooling process, the feature maps have a reduction on its dimensions. Then, a fully-connected layer will receives data and transmits them
to an output layer that contains a classification function capable of categorizing the result of the network.

process known as overfitting, which allows the model to obtain
a good performance with training data, but an unacceptable
performance with new data. This process can make the model
to be skewed according to a data pattern and can make it stop
predicting correctly on new information, such as in test or
validation data.

In the field of object detection and automatic segmen-
tation of images, purely convolutional networks had some
performance gaps during the detection processes with images
containing multiple instances of certain objects, as some errors
used to occur with the focus on the regions of interest (ROIs)
where the objects were located, and these networks did not
have any type of hierarchy that was focused on locations or
regions. To solve this problem, [20] proposed a new archi-
tectural pattern for convolutional networks where a selective
search and grouping are executed for the identification of these
regions. Known as region-based convolutional neural networks
(R-CNNs), the models based on this new architecture become
capable of generating a set of sub-segments and candidate
regions, applying a greedy algorithm to combine closer regions
and generate wider ones, using them to predict the expected
locations.

This proposal has produced an improvement in the feature
extraction for the generation of maps in the intermediary
(or hidden) layers and, with its subsequent evolution through
architectures such as Fast R-CNN, Faster R-CNN and YOLO
[21], [22], [23], it has gained significant notoriety for the
resolution of classification problems in the field of computer
vision. Another architecture that is based on R-CNNs and that
achieve a considerable performance is the Mask-RCNN [24],
which is mainly applied to instance segmentation processes.
This architecture locates candidate regions where the ROIs
may be found and, using these regions, include a pixel mask
over the object in the region with the highest confidence level.

Even though the deep neural networks focused on classifica-
tion problems had a significant success and constant advances,
there were some discussions about the inclusion of these
models in unsupervised and reinforcement learning contexts.

It was also discussed about the ability of these networks to
work in an environment where the evaluated datasets were
not labeled. With the application of these learning categories,
it would be possible to evaluate similarities between data units
and to recognize patterns present in them, creating groups and
identifying relevant differences.

Two concepts of the machine learning area were united to
the construction of new models able to learn without using
the standard supervised paradigms, but following the line of
algorithms of unsupervised learning and reinforcement. So,
approaches were developed using generative models combined
with an adversarial reinforcement process [5].

In the statistical field, the generative models can generate
data without a specific reference (i.e. having almost no knowl-
edge about the evaluated dataset) [5]. The main idea is that
only basic parameters, such as constants and the dimensions of
the data, are known and the rest of them is hidden, influencing
the model to randomly generate these hidden parameters
and assisting it to find a new sample present in that scope.
Thus, a joint probability distribution is done to randomically
approximate the parameters available in the evaluated set to
create a new data unit. Bayesian networks, autoencoders and
hidden Markov layers are examples of generative models used
in the artificial intelligence area.

In a deep learning environment, generative models are
highly applied in optimization problems or to learn to produce
random examples using an initial dataset, as seen in the case of
generative-adversarial models (GANs) and autoencoders [5].
In problems related to image-to-image translation and image
enhancement, generative models can have a significant perfor-
mance because of their ability to find encodings between the
original data and the resulted output. Following this problem,
an autoencoder architecture is composed by two levels that are
able to complete this task, which can compress the original
data into a pattern and then uncompress it to an output, as
shown in Figure 5.

One of the applications of models based on generative
architectures is in the image enhancement field [25]. With



Fig. 5. Example of an autoencoder architecture.

proposals of variations in the initial architectures, other neural
network topologies based on autoencoders and GANs have
been developed to solve some other problems. Recent results
showed that this type of architecture can be widely used as
a way to optimize and automate the image pre-processing
stage during the execution of computer vision algorithms.
Thus, the applicability of these models in robotics is observed,
specially in surgeries that are assisted by video-camera control
robots, which need high quality on images during processes
of orientation and localization.

C. Image Enhancement

During data analysis procedures, variances between the
multiple data instances can represent differences that can
influence the result of the algorithm. This problem is applied to
the most different types of analysis, because, as the work may
involve more data and real-time processing, the divergences
can be increased without a proper control, especially when
the context involves new data that was not analyzed before,
as in the moment where the prediction based on test data
is done. According to this situation, enhancement techniques
used during the pre-processing stage are necessary to allow the
algorithm to be prepared to these differences. In the image
processing field, there are some techniques focused on the
process of enhancement to optimize classification algorithms
[6].

There are two categories of image enhancement methods:
spatial approaches and frequency approaches [26]. The spatial
approaches are focused on the group of pixels available in the
analyzed frames. In this case, the enhancement occurs through
the application of a enhancement function in the values avail-
able in a selected pixel region. Frequency approaches act in a
similar way, but they are focused on the full image and work
in a frequency domain (e.g. Fourier transform). Both of these
methods work according to (2), where g is the result generated
by the function T when it is applied in a selected pixel region

(in the case of spatial methods) or in a complete image (in the
case where frequency methods are used) known as f . Thus, it
is observed that T will search for certain characteristics from f
and change the ones that are incorrect to enhance the original
data into a improved one.

g = T (f) (2)

As the images may not always be following a certain pattern
of optimization, especially when there are some interference
from the environment that may cause some errors, as seen
when low lighting or focus loss occur, a fixed enhancement
process cannot be successful in all of the cases. Because of
that, it is observed that solutions based on automatic enhance-
ment algorithms become necessary, as these algorithms can
learn to find the best optimization for the map of parameters
used by the function T [26].

Some machine learning approaches are focused on using
predictive methods to assist with image enhancement tasks.
Thus, a model seeks to find a T function that can significantly
enhance images to a specific standard. Generative models are
one type of these examples, as in the case of autoencoders,
which are capable of performing image-to-image translation
tasks. Consequently, it is observed that these models can be
used to optimize an image without using a fixed function,
adapting the algorithm to images present in different state
types and variations, as in the case of the problem that the
present project aims to solve.

III. RELATED WORKS

In order to optimize medical instrument detection processes
in MIPs, some methods and approaches are aimed to perform
automatic image enhancement using techniques derived from
the state-of-the-art of artificial intelligence. Including both the
endoscopic field and the laparoscopic area, these models are
focused on solving problems that include interferences caused
by smoke in images, specular reflections and different types
of noises [27], [28], [29], [30], [31]. As can be observed
in these studies, one of the challenges currently encountered
is that image enhancement models based on classical AI
methods make these algorithms specialists in only one type of
enhancement technique, and it is difficult to adapt them to a
context where it is necessary to carry out a set of processes that
aim to optimize different characteristics of an image, specially
when the problems are related to light and brightness.

In the case of the models proposed in [27], the focus is
mainly on smoke and noise removal on videos of MIPs. During
the image enhancement process, these two types of errors
can cause significant losses in textures and, depending on
the concentration of the smoke or noise, may generate errors
that are primarily associated with depth and distance factors
between objects, which can interfere in the performance of
object tracking algorithms that use these images as input. In
[28], an unified model based on an algorithm of expectation-
maximization with variational Bayesian inferences was de-
veloped to perform the enhancement of regions with smoke,



reflections and noise. However, the proposed model is valid
only for these problems, as it does not cover issues related to
illumination issues.

In [29], a generative-adversarial model was developed to
optimize the enhancement process of laparoscopic images
containing smoke. Using an architecture of image-to-image
transformation and applying a perceptual-oriented GAN model
that is capable to learn the mapping between deformed input
images and restored output images, combining it with a multi-
scale structural similarity method, significant qualitative results
were obtained, but a difficulty on the application of this model
in real-time processing environments due to issues related to
its processing time was noticed. However, with this experiment
it was possible to notice that this model category can aid the
processes of enhancement of surgical images as it considers
important characteristics such as texture and depth.

In the field focused on mist and specular reflection removal,
there are some approaches focused on image enhancement
without the lost of colors on the enhanced regions [32], [31].
In such cases, the chromatic information tends to be modified
by the interaction with lighting. During the enhancement, de-
construction processes were performed in these regions, which
are capable of causing losses of these types of information,
generating errors and failures. In [31], a statistical approach
was used to remove fog signals, but there was some errors on
images with a high quantity of fog and there was not a routine
to verify if the processed image really contained errors or not,
which could cause some unnecessary executions.

In some areas that are focused on problems that are different
from the medical field, the combination of these automatic im-
age enhancement techniques with algorithms focused on object
detection is being tested, as seen in the experiments performed
in [33], which have showed the need for a process capable of
improving the analyzed frames. However, the currently applied
models suffer from questions as the persistence of specific
errors in the images, since these proposals usually seek to
cover models that are specialist only in a type of enhancement.
In this perspective, the present project seeks to obtain a model
that is able to optimize more lighting error points in images in
order to improve the performance of algorithms used to detect
medical instruments during MIPs and to improve the analysis
of these images by surgeons and other medical professionals.

IV. PROPOSED SOLUTION

A. IR-MIP

The IR-MIP (Illumination Restorer for Minimally Invasive
Procedures) model, which is presented in this section, is a
neural approach based on autoencoders to improve the process
of image enhancement with focus on the illumination of
regions that are present in surgical images captured in the
context of MIPs. The model LLNet, proposed in [34], was
used as a baseline for the proposed solution. However, some
adaptations of the original model were included to support
color images, as their approach only supported binary images.
Moreover, this model was trained with some specific datasets
from MIPs, with the focus on the optimization of this approach

for this context. A dataset for the training of illumination
restoration algorithms based on MIPs was created with the
use of surgical images provided by [35].

The use of LLNet as the base for the proposed solution
was mainly because of the categories of images that were
used. The collection of training and evaluation datasets include
images present in PNG (Portable Network Graphics) format.
The proposed network has obtained a significant result with
this format of data. Some synthetic illumination noises were
applied to show the efficiency of this algorithm over different
levels of illumination and errors in variant regions. With the
adjustment of some network hyperparameters in the hidden
layers, the developed autoencoder was improved for different
types of solid that were present in the human internal organs
(e.g. different tones of flesh, noises caused by blood and
internal liquids, bones and vascular regions).

Autoencoders have a relevant performance with this type
of problem, because they are capable of abstracting a set of
encodings for the data present in irregular formats, as in the
case of noised images. Thus, the main task of IR-MIP in this
context is to learn about how to adapt a collection of data
that are available in a wrong pattern called W to a improved
pattern called I . This transformation will be learned through
the discovery of a function called E, which is an encoding
capable to transform W into an optimized form similar to I .

The proposed model will be used in the pre-processing
stage of object detection algorithms that are used by camera-
control robots that operate as surgical assistants during MIPs.
The camera-control pipeline involves the following stages:
the first one is described as the capture of an image by the
camera; the second one involves the pre-processing stage,
where some image enhancement algorithms are going to be
used to improve the image to a specific quality pattern (our
model is applied at this stage); the third stage consists of
the process of object detection, that is executed by another
algorithm; and the final stage involves the camera orientation
according to the detection of the medical instruments, as they
are part of the ROI (region-of-interest) during the surgery.

The main objective of our solution involves the enhance-
ment of the darker regions of a MIP image. Therefore, this
solution can improve the execution of the object detection
algorithms that are going to be used in the described pipeline,
having a significant contribution as it has a better performance
than some statistical models, as the one proposed in [36],
which consists in an algorithm that estimates an illumination
map on the image, generating a fixed filter that is based on
a mathematical function. Some metrics were used to measure
the efficiency of our model and evaluate its performance, with
focus on the analysis of the enhancement level of the proposed
approach.

B. Architecture

The IR-MIP architecture uses the proposed architecture for
the LLNet model as baseline [34]. This architecture consists
of an autoencoder capable of performing the task of image-
to-image translation on images that have low light. These



images with brightness errors can be improved automatically,
as models developed based on this architecture can generate an
encoding that can identify which points of that image should
be improved. The problem that LLNet seeks to address is with
its focus on generating natural lighting in outdoor images, and
this model only supports binary images. Therefore, one of
the focuses of IR-MIP is to transform this baseline model so
that it could support color images, as the problem involves
identifying regions present within human internal organs, and
being able to act with significant accuracy. within that surgical
field.

The architecture is based on a sparse denoising, or SDA,
autoencoder. An autoencoder by itself will always try to extract
a set of unlabelled data features to generate an encoding
capable of transforming an W pattern into another pattern
called I . The set of inner layers of an sparse autoencoder
is larger than its input and output layers. As a consequence,
the autoencoder can abstract more features from the input data
with this greater number of intermediate layers. In combination
with denoising algorithms, these autoencoders can generate
noise in the input data. These noises are used to improve the
encoding process, so this procedure does not simply create a
copy of input to output, but also learns how to extract an even
larger set of features from that data.

The architecture originally proposed for LLNet has an input
layer capable of receiving misleading images, a set of interme-
diate layers capable of encoding and decoding with the focus
on denoising focused on lighting and contrast adjustment.
Finally, enhanced images are returned through the output layer.
These enhanced images have the same dimensions as the
original images. In addition, during the training and prediction
process, some procedures are used to optimize both the input
images and the images generated by the inference process.

A set of functions used in the training process are aimed
at identifying the levels of image corruption and adjusting
the learning rate. These functions act as tuning agents to
optimize model learning against the analyzed dataset. After
this process, a pre-training stage is performed, where these
functions estimate the value of the learning rate to be used.
This process consists of about 30 initial epochs and it is
performed along with the use of these adjustment functions.
A maximum value of 100000 training epochs/iterations has
been adjusted for cases where the loss value is very variable.
However, it is possible to observe training cases where a
smaller number of epochs were required, since the loss value
remained stable after a good number of iterations.

Unlike the originally proposed LLNet, which only works
with one color pattern (i.e. black and white), the proposed
model is able to analyze images available in the RGB standard.
This process is performed primarily in the inference phase
of the model, where the image is processed and restored. To
restore, the image tensor must be divided into three arrays,
each representing a color pattern, reconstructing each of these
patterns individually after that and obtaining the improvement
of color images.

C. Challenges

A number of challenges are associated with the problem
that this project seeks to solve. Some projects in the object
detection area have already pointed out that errors caused by
lighting can significantly impair the execution of algorithms in
this field. Therefore, it is observed that the problem faced has
significant relevance and that the use of image enhancement
algorithms may be useful for its solution. Listed below are
some of the key challenges faced during the implementation
of this project. These challenges are related to both the field
of action and the construction of the proposed model.

Because the proposed model is based on neural methods,
the process of building a dataset or data collection becomes
relatively important within the project. Therefore, there is a
need to build a data set capable of assisting the proposed
model to converge correctly in the face of surgical images
of MIPs. This dataset should allow the model not to perform
the overfitting process, where the convergence is achieved only
for the training set. In addition, it is noticeable that the use
of data augmentation within the evaluated database can assist
with cases where data coming from a real context has certain
disparities.

Another challenge associated with this process is the cor-
rect recovery of coloration of the regions present within the
enhanced image. Since images taken during MIPs are internal
regions of the human body and have a set of fluids such as
blood, the proposed algorithm must be able to differentiate
these regions, as this directly impacts the evaluation of the
image. The proposed model has support for color images, how-
ever an evaluation was performed to the point of optimizing
it, identifying the different shades of red or pink and white
that are present in the blood, organs, veins and other internal
regions. This also involves issues related to possible cases of
over saturation or too much brightness in images.

Another issue involves retrieving occluded parts and iden-
tifying different levels of placement of objects in the image.
As an example, a medical instrument can be positioned in a
layer higher than the operated region, generating an occlusion.
This leveling is very important as it directly influences the
identification of how the region is being illuminated and
how the 3D environment layers are represented in a two-
dimensional image, this also includes the identification of
edges present in the enhanced regions.

In addition, movement issues also play a significant role
in this problem, as motion blur caused by the movement of
medical instruments may occlude certain operated regions.
This occlusion may cause the lighting enhancement algorithm
to understand that this noise is an extra layer and to perform
the region enhancement differently, causing inconsistencies
or generating artifacts that do not exist in the actual image.
However, the proposed model should focus on identifying
these corner cases and correctly improving the regions of
interest.

Finally, the last most relevant problem is associated with
the incidence of shadows in the image. These shadows act



similarly to the problem related to occluded regions and the
problem related to colorization, but this issue is more associ-
ated with the possibility of allowing the developed algorithm to
identify lower layer regions that have darker tones. However,
the identification of shadows also becomes important for the
evaluation of the analyzed images, allowing the algorithm to
recognize different shades present in a region of interest.

V. EVALUATION

The process of evaluation of the IR-MIP model have con-
sisted in a group of stages that were focused on obtaining
the best parameters and the tuning of the proposed model.
Firstly, a research was done with the intent to gather an image
set of the MIP area that were significantly variant with the
avoidance of possible cases of overfitting on our model. The
collected data have passed through a process of augmentation
that was composed mainly by the application of different
levels of synthetic noises, rotation and changes in the axes of
the ROIs. Images of laparoscopic procedures were collected
from different sources to build the used dataset. Some of
these images were taken directly from surgical videos through
the use of some tools capable of splitting these captured
videos into various frames, using free software applications
like FFmpeg and ImageMagick to automate this process. A
further description of the used datasets will be shown at
Subsection V-A.

The training of IR-MIP was realized with a maximum
number of epochs set as 100000. However, the model could
balance its loss values on some lower epochs over most of the
training processes. The evaluation of this quantity of epochs
was done sequentially, focusing mainly on a number that was
good enough that could allow the network to converge properly
without causing errors due to some increase on its loss function
or because of the overfitting or underfitting. In comparison
to the original LLNet model, our approach has reached a
slightly lower number of epochs as it is not as generalist as the
base model and it is focused on a specific scope of problem.
The validation was realized with around 25% of the images
available in the datasets.

The following metrics to evaluate enhanced images were
used: Peak Signal to Noise Ratio (PSNR), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE) and Structural
Similarity Index (SSIM) [37], [38], [39]. These metrics are
highly used in the field focused on the procedures of image
enhancement to compute the differences between the original
images and the enhanced ones. The use of these evaluation
techniques in the present project is more described in the
Subsection V-B.

The main experiment of this project has consisted in the
comparison of our model to another one available in the state-
of-the-art of image enhancement, which is known as LIME
(or Low-Light Image Enhancement via Illumination Map
Estimation) [36]. This method consists in the improvement
of the quality of RGB images by an estimation of the light
present on each pixel and the construction of an illumina-
tion map over the image. This approach is built over some

TABLE I
GOOGLE COLAB HARDWARE SPECIFICATION.

CPU Intel(R) Xeon(R) CPU @ 2.20GHz
GPU Nvidia Tesla K80
RAM 16 GB
Operating System Ubuntu
Hard Drive 320 GB

TABLE II
OCTAVE ENVIRONMENT HARDWARE SPECIFICATION.

CPU Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
GPU Nvidia 940M
RAM 8 GB
Operating System Ubuntu
Hard Drive 500 GB

statistical methods and aims to help the execution of object
detection techniques with the image enhancement support on
the pre-processing stages. An adaptation of the algorithm
(https://github.com/cjlcarvalho/lime-octave) was developed to
run it on the Octave platform, which is a free software,
while the original implementation is written with Matlab,
which is proprietary. The experiments that are described in
Subsection V-C show the comparison of this method with IR-
MIP during MIPs.

The tests for the IR-MIP were done in the Google Co-
lab platform (https://colab.research.google.com), using GPU
acceleration support. The following hardware specification
described in Table I was used. As Google Colab has only
native support for Python scripts, the LIME implementation
was run in a different environment, which contains the hard-
ware specification described in Table II. Both of them were
evaluated with the same test data and our results show that IR-
MIP has reached a better performance as it is more specialized
in the MIP context than the statistical method used by LIME.

A. Datasets

Nowadays, some challenges are related to the process of
collecting a sufficient amount of data for image enhancement
processes. One of these challenges is that most of the available
data that are in public data sources are available in an opti-
mized version (i.e. without any possible environmental errors
caused by light, movement or other factors). Therefore, one
solution for this situation is the process of generating synthetic
errors in good quality datasets. As most of the MIPs images
are available for other types of computer vision problems,
such as object detection and image segmentation, one of the
contributions of this project was the creation of an image
enhancement dataset with focus on illumination issues.

The dataset that was used in this project was built by the
insertion of lighting errors into different image datasets that
were originally used to solve other computer vision problems
in the MIP field. The first of these datasets was a laparoscopy
image sequence that was created by Sznitman et al [35]. This
dataset was initially used to track laparoscopic instrument
and their scales during the surgeries. The second dataset was



Fig. 6. Images from the processed dataset. Each example contains a sample of the original image and its version containing the synthetic lighting errors.

composed by images from laparoscopic colorectal surgeries
that were initially used to segment rigid medical instruments.
The third dataset was focused on robotic surgeries and displays
2D poses of needle driver instruments.

Some scripts were developed to generate the synthetic
errors in the images. These scripts used some external image
manipulation tools and applications such as FFmpeg and
ImageMagick to change the original images from the datasets
and insert illumination, brightness and contrast issues into
them. The focus of this process was to convert these im-
ages into analyzable samples according to the context of the
problem that was faces in this project. Figure 6 shows some
examples from the generated dataset, including a comparison
between the original images and their outputs after the image
manipulation.

However, another challenge has appeared during the imple-
mentation and tests that were done in the developed model
because the images are not always with the same level of
lighting. Thus, to simulate the illumination issues as they occur
in a real-world context, a data augmentation was done into
the generated datasets, where different levels of contrast and
lighting issues were inserted into the dataset, increasing its size
significantly. After this process, our model could train with
a light enhancement dataset composed by surgical images,
where each of them has an enhanced counterpart that allowed
the autoencoder approach to generate the translation between
a image in unacceptable conditions and an adequate one.

B. Metrics

This subsection shows a list containing the description for
each metric used to evaluate the model and its importance on
the performance benchmarking of our algorithm.

1) Mean Squared Error (MSE) [38]: Used to compute the
differences between a generated image and the original one.
This metric calculates the cumulative sum of the squared errors
between two images, outputting a value that is always greater

than zero and that represents the distance of the resulted image
from the original. Therefore, a high MSE value represents the
quantity of errors present in the output.

MSE(O,G) =
1

MN

M∑
y=1

N∑
x=1

(O(x, y)−G(x, y))2 (3)

The Equation (3) describes the MSE formula, where M
and N are the dimensions of the compared images, while O
and G represent the original image and the enhanced image
respectively.

2) Peak Signal to Noise Ratio (PSNR) [38]: PSNR is a
metric used in the image enhancement field to calculate the
quality of the enhanced images after the process executed by
a transforming algorithm. This method compares a signal (i.e.
the original image) to a transforming noise, which represents
the changes introduced by the used process. The relation
between this metric and the MSE is the opposite, as a high
value of PSNR represents a high quality on the resulted image.

PSNR(O,G) = 10 ∗ log10(
MP 2

MSE
) (4)

In this project, the PSNR is calculated by the usage of
the formula described in Equation (4), which compares two
images (i.e. the original and the enhanced), where MP is the
maximum pixel value available on these images.

3) Root Mean Squared Error (RMSE) [38]: Similar to the
MSE method, the RMSE calculates the standard deviation of
the prediction errors. This method shows how distant are the
errors when compared to a desired output, representing this
distance as a correlation between the original image and the
result. Being a measure of the accuracy for image enhancement
techniques, this metric is proportional to the value of the MSE,
but having a relevant use when the focus is to detect significant



discrepancies on the result data, as in the case of outliers. This
metric is illustrated by the Equation (5).

RMSE(O,G) =
√
MSE(O,G) (5)

4) Structural Similarity Index (SSIM) [39]: SSIM is a
metric to quantify the degradation caused by a transforming
model to an image, being specially focused on its losses. This
method has a good performance when the evaluated images
are available in compressed formats (e.g. JPEG and PNG), as
in the case of the images used in this project. While PSNR
is focused on the noise present in the result, this method
compares the visible structures of the image, calculating the
errors according to two images of a fixed size N×N .

SSIM(O,G) =
(2µOµG + C1) + (2σOG + C2)

(µ2
O + µ2

G + C1)(σ2
O + σ2

G + C2)
(6)

The Equation describes the SSIM metric formula, where µO

and µG represent the mean of O and G respectively, while σ2
O

and σ2
G represent the variance of O and G respectively. The

C1 and C2 variables are two variables used to stabilize the
division.

C. Experiments

The experiments that were done in this project were divided
into two different stages. The first stage has involved the
evaluation of the proposed method and the execution of LIME,
including the estimation of the values of the metrics according
to random samples from the analyzed data. Then, the second
stage involved a comparison of the results of these two
methods.

1) IR-MIP and LIME executions: During the training pro-
cess of IR-MIP, some adjustments were done on its archi-
tecture to obtain better results according to the used image
enhancement metrics. To accomplish these outcomes, tuning
procedures and changes in the training dataset were done with
the focus on the reduction of cases of generalization and
overfitting. As a result, the proposed model could converge
to the obtained results, making the images generated in the
output have a high level of similarity according to the original
images from the test dataset that had not been present in the
training dataset.

The LIME tests were performed based on the same data
used during the IR-MIP tests. In addition, the metrics used
have showed that the divergence in the the pattern generated
by LIME is significant and it is possible to observe that a
change in the color pattern is considerable, especially when
the improved region presents different shades of blood, fluids
and internal organ stains. The optimization algorithm BM3D
was used in combination with LIME to balance its outputs.

2) Metric evaluation: According to the metric evaluation
process, the IR-MIP model has obtained a favorable result in
comparison to the results that were obtained by the LIME
model. Among its main advantages, it is possible to cite the
fact that the proposed model was able to estimate the colors
present in the image pixels with a high level of accuracy and

TABLE III
METRIC RESULTS.

Metric IR-MIP LIME
MSE 29965.31 128260.81
PSNR 27.78 27.50
RMSE 10.40 10.75
SSIM 0.19 0.07

this approach could also identify the variances between the
various regions present in an image, including altered color
tones according to occluded regions and with higher shadow
levels. Table III compares the results of these two models
according to the metrics, and these results were estimated
based on the execution of these models in random dataset
samples, showing how much LIME has generated divergences
in the data that could be interpreted as inconsistencies in the
images.

D. Discussion and Obtained Results

This subsection seeks to analyze and evaluate all the results
obtained during the three experiments that were performed,
including a reflection about the pros and cons of using
the proposed model for the problem that was studied. The
contributions of this project are also debated in order to assess
their impact on the state-of-the-art image enhancement area
with focus on lighting problems.

As seen from the results obtained with the evaluation
metrics presented in Table III, IR-MIP is a model that currently
solves the low light problem in MIP images. The images
in Figures 7(b), 7(e) and 7(h) show some examples of IR-
MIP output, where it was possible to make the deteriorating
lighting images could be significantly improved. Compared
to the LIME model, a significant difference could be noted
as LIME have failed to improve the light on the deteriorated
image at some more intense levels, as shown in Figure 7(c).

An important challenge that was considered was related to
the execution time of this model. As an approach based on neu-
ral methods, IR-MIP can have considerable higher execution
time in a real environment than statistical methods. However,
it is observed in the tests performed that its execution time was
significantly compared with the other method analyzed, whose
approach was based on a statistical analysis. Nevertheless,
it is noticeable that an adjusted version of IR-MIP can be
developed in the future with the focus of further optimizing
this processing time, since MIPs are risk scenarios and the
response time of the algorithms used should always be as short
as possible.

The construction of the dataset used for the algorithm
evaluation is a relevant contribution to the literature of the
area. The built dataset has a low noise occurrence and its
normalization is high. Regarding the dispersion present among
the data, it was observed that this factor contributed to the
execution of the proposed algorithm, since it could evaluate
different types of images present in the dataset. The data
augmentation process also have contributed to the fact that the
IR-MIP could have a good hit rate at different light levels.



(a) Low-Light Image 1 (b) IR-MIP Output 1 (c) LIME Output 1

(d) Low-Light Image 2 (e) IR-MIP Output 2 (f) LIME Output 2

(g) Low-Light Image 3 (h) IR-MIP Output 3 (i) LIME Output 3

Fig. 7. Different images before and after the process of light enhancement by IR-MIP and LIME methods.

VI. CONCLUSION

Currently, one of the problems associated with the process
of analyzing surgical images taken during MIPs is related
to the lighting present in these images. Some automatic
approaches based on machine learning are being developed
to solve problems in this category. However, it was observed
the possibility of using a model based on artificial intelligence
so that these images could be preprocessed by the algorithm
in order to improve them for a posteriori analysis.

The IR-MIP model, built on a deep neural approach and
having an autocoder based architecture capable of handling
lighting enhancement image-to-image translation processes,
was able to solve the problem by presenting favorable perfor-
mance in improving low-light surgical images. Through the
construction of a training and testing datasets, it was possible
to improve the model for the execution of this task, where
it was efficient according to a set of experiments performed,
including the evaluation of metrics proposed in the literature
of the image enhancement area.

From the obtained results, it is possible to affirm that IR-
MIP can be an efficient approach to solve this kind of problem,
considering that the model was tested and compared with a

state-of-the-art machine learning approach that aims to solve
the same kind of problem. Therefore, neural methods based
on deep learning can successfully perform the task of image
enhancement in a minimally invasive surgery context.

A. Obstacles

Some obstacles had appeared during the process of devel-
opment of the present project. Better results can be achieved
after the resolution of these obstacles and the present model
will be able to run in a real environment after that. Some of
these obstacles are listed below:

• The process of training with real images could make the
proposed algorithm able to be used in a real scenario.
However, it was not possible to obtain public datasets
with real images of surgeries where some lighting de-
fects were present. As a result, the task of building a
dataset with images containing synthetic errors became
necessary.

• Deep learning algorithms tend to require significant com-
putational power. Thus, it is noticeable that the use of
platforms capable of processing these types of models
becomes necessary in a real scenario.



B. Future Works

During the development of the project, some points of
improvement that could be considered as future works were
observed. Moreover, some details related to the implementa-
tion of the proposed model appear as project extension ideas,
allowing the evolution of the present model. Among these
points, the following can be listed:

• Include some Attention-based intermediate layers so that
regions of interest can be identified for the lighting
enhancement process (i.e. just focus on lighting enhance-
ment where it really is needed). This work can cause a
reduction in the processing time and make the algorithm
even more expert in the process of recognizing regions
that really need improvement.

• Combine the proposed algorithm with other image en-
hancement models to create an image preprocessing stack
capable of handling multiple problem categories. The
focus of this future implementation would be to remove
smoke, fog, and motion issues, along with the improved
lighting seen in the present model.

• Allow the model to be able to evaluate images available
in RAW format as the present solution deals only with
PNG or JPEG images. The RAW standard has a higher
dimensionality than these other standards, including all
pure image data without being processed by any com-
pression algorithm.

• Use reinforcement learning by inserting a discriminator
into the training process. The discriminator can identify
points where the proposed algorithm can improve and
enable it to adjust its learning process correctly.

• Perform the test of the model along with various types
of algorithms aimed at pattern recognition in surgical im-
ages, such as segmentation algorithms and image object
detection.
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