
Software Evolution Sonification

Pedro O. Raimundo
Instituto Federal de Educação, Ciência e

Tecnologia da Bahia
pedrooraimundo@ifba.edu.br

Sandro S. Andrade
Instituto Federal de Educação, Ciência e

Tecnologia da Bahia
sandroandrade@ifba.edu.br

ABSTRACT
Program comprehension is one of the most challenging tasks
undertaken by software developers. Achieving a firm grasp
on the software’s structure, behavior and evolution directly
from its development artifacts is usually a time-consuming
and challenging task. Software visualization tools have ef-
fectively been used to assist developers on these tasks, mo-
tivated by the use of images as outstanding medium for
knowledge dissemination. Under such perspective, software
sonification tools emerge as a novel approach to convey tem-
poral and concurrent streams of information and have been
proven to perform remarkably well due to the their inher-
ently temporal nature. In this work, we describe how soft-
ware evolution information can be effectively conveyed by
audio streams, how music, software architecture concepts
and techniques come together to achieve such means, elabo-
rate on the possibilities for future endeavors in this research
area and finally propose a framework for sonification of ex-
tracted evolutionary metrics from software repositories.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Auditory (non-speech) feed-
back, Theory and methods; H.5.5 [INFORMATION IN-
TERFACES AND PRESENTATION]: Sound and Mu-
sic Computing—Methodologies and techniques, Signal anal-
ysis, synthesis, and processing ; D.2.8 [SOFTWARE EN-
GINEERING]: Metrics—Complexity measures,Product met-
rics,Process metrics; D.2.m [SOFTWARE ENGINEER-
ING]: Miscellaneous—Software Evolution

General Terms
Software Sonification, Auditory Display, Software Evolution,
Program Comprehension, Sound and Music Computing

Keywords
program comprehension, auditory display, software evolu-
tion, sound and music computing

1. INTRODUCTION
Comprehending computer programs is a notoriously diffi-
cult task that involves gathering information from diverse
sources (source code, documentation, runtime behavior, ver-
sion history, just to mention a few) and gets progressively
harder as the program’s size and complexity grow [24]. Syn-
thesizing that information to tackle the development process
effectively and efficiently is an endeavor that requires time,
experience and, more often than not, peer support.

Regardless of the abstraction level (code, design, architec-
ture) at which the developer is going to address the problem
at hand, tools are usually employed in order to help the
decision making and understanding. Such tools range from
built-in Integrated Development Environment (IDE) helpers
and code metric viewers to complex software visualization
solutions, focusing on conveying information to the user
through the computer screen using tables, charts, drawings
or animations due to their higher apprehension, if compared
with a naive representation of the same data. While such
approaches are helpful in the comprehension process, aural
representations of software structure and behavior have been
shown to excel at representing structural [26], relational [4]
and parallel or rapidly changing behavioral data [23] in an
non-invasive and uncluttered fashion with high apprehension
rate even for individuals without extensive musical back-
ground [4, 28, 27].

Software Evolution, specifically, adds another dimension to
the problem, since it forces the subject to add another layer
of understanding to the structural aspects of a software pro-
gram; the temporal layer. Common analysis requires, for
example, information about the relationship between com-
ponents of a system, and lower-level information such as
lines of code and fan-in/fan-out values per component. Evo-
lutionary analysis can, for example, consume the results of
the regular analysis procedures to yield higher-level informa-
tion such as architectural drift in a given time slice, through
the use of the project’s meta-data (number of commits, bugs
reported, time between releases, etc.). Evolutionary analy-
sis can also provide environment-related information which
is particularly useful to manage Large Program Evolution
and Continuing Change [16] in computer systems.

In order to convey such information through the means of
aural representations it is possible to use any kind of sound.
Vickers and Alty proposed that these constructs are more ef-
fective if they follow culturally-appropriate styles, conceived



analogously to words, which carry meaning to an individ-
ual native to or familiar with a specific language, and also
that western musical forms (based on the seven-note dia-
tonic scale) are more readily recognized around the world
[28].

This work presents a novel approach to transmit informa-
tion about software evolution by exploiting sound’s uniquely
temporal nature and aural events such as melody, harmony,
rhythm and noise. Different events are used because each
event has a distinct impact on the listener and they can
be mixed and matched together to convey different streams
of information, as long as not being confusing or intensely
overwhelming.

The key contributions of this work are as follows: first,
we propose the foundations for a sonification framework in
which the evolutionary aspects of a piece of software can
be represented as sound streams, in an unobtrusive and
noninvasive manner, building upon the existing research on
the fields of auditory display and software comprehension
through sonification. Second, we categorized and surveyed
the academic production in the multiple disciplines that
come together in this field. Third, we explore a research
field that, to the best of our knowledge, has yet many re-
search challenges, raising awareness to this particular field
and possibly creating a new forum for idea exchange with a
lot of untapped multidisciplinary potential.

The remainder of this publication is organized as follows:
Section 2 elaborates on the theoretical foundations for this
work and gives some historical background, while also ex-
plaining the fundamental concepts upon which it builds to
answer the research questions brought forth, Section 3 de-
tails the proposed approach to implementing a software solu-
tion that helps answer these questions, Section 4 discusses
the implementation choices and development process under-
taken to build the framework, Section 5 contextualizes the
usage of sonifications for program comprehension, and de-
tails the results of a survey on previous work in the field of
software evolution sonification, Section 6 presents the val-
idation strategy utilized to evaluate the framework, along
with some findings and Section 7 summarizes the content
and purpose of this paper, restates the research questions
brought forth and hints at further possibilities in this line of
investigation.

2. FOUNDATIONS
The present work lies within the intersection between the
fields of Sound and Music Computing, Auditory Display and
Software Evolution, while all these three areas have been
object of numerous studies, the efforts to try and bring all
three together have been comparatively modest.

2.1 Sound and Music Computing
Sound and Music Computing (SMC) is the research field
that deals, generally speaking, with the relationship between
music and computers, a bond that can have its roots traced
back to the 1950’s when composers and engineers worked
together to compose music from the beeps and clicks from
their machines. Nowadays, the field has consolidated and
broadened itself to take on the challenges of understanding,
modeling and producing sound and music through compu-

tational means with artistic, scientific and technological as-
pects being taken into consideration [5].

SMC research is inherently multi-disciplinary because the
researchers in this field aimed from the very beginning to
bridge the gap between disciplines as diverse as physics, psy-
chology and engineering. Music was the common ground
that allowed them to do so, in [5], Bernadini and de Poli
define music in the SMC area as follows:

Music, as the name itself indicates, provides the
core investigation area for SMC. It supplies both
an endless material (both in scope and depth)
for analytical investigation (Musicology) and the
requirements to extend expressive means of cre-
ation (Music Composition), while Music Perfor-
mance yields interest on both sides (analytical
and expressive).

That said, in this work we deal with SMC as a cohesive and
consolidated unit, without going in detail about the building
blocks that compose it, but rather looking into the main
studies of its literature and applying the underlying music
theory in our musical auralizations.

2.2 Auditory Display
Auditory Display is another well-established research field
that tackles challenges involving sound and technology, not
necessarily dealing with musical, artistic or psychological
aspects, this field is more technology-oriented and focuses
heavily on how to transmit information from a computer
to the user through sound. While also having its roots in
early experiments with computers and sound synthesis, the
Auditory Display field matured much more quickly in the
80’s, when Sara Bly’s works [6, 7] demonstrated that it was
feasible to display data using non-speech sound, laying the
keystone in the field. In 1992, the International Conference
on Auditory Display (ICAD) was established, holding an
annual event for researchers in the field to share their ideas
and findings.

At the end 90’s and well into the 2000’s, developments in
the auditory display field allowed researchers to sonify var-
ious software aspects and start working towards leveraging
auditory display’s potential in order to aid program com-
prehension. One of the earliest implementations of software
sonification was InfoSound [23], a tool that aimed to as-
sist professional coders follow rapidly-occurring, concurrent
or otherwise hard to visualize software behavior. In 1999,
Vickers presented CAITLIN [26] as part of his doctorate
thesis. His tool extracted information about program’s con-
trol flow and structure to help novice pascal developers track
bugs and achieve a firmer grasp of the code they just wrote.

It should be noted that these early tools required special
MIDI (Musical Instrument Digital Interface) Synthesis hard-
ware and familiarity with musical structures, since the user
had to create his or her own motifs for the application, these
were merely limitations of the technologies of storage, pro-
cessing and synthesis available at that time. The experimen-
tations ran in the studies that lead to the development of



these applications were also great contribution to the field,
allowing researchers to have an initial understanding of what
is effective and what isn’t when it comes to software sonifi-
cation.

As technological advances facilitated the access to sound
synthesis hardware, and higher level sonification technolo-
gies such as CSound [25], MP4-SA [21] and MAX-MSP [3]
emerged, the proposed software solutions became increas-
ingly more sophisticated. Tools such as the Sonified Om-
niscient Debugger [24], CodeDrummer [15] and CocoViz [8]
are all good examples of the technological advancements in
the area, and each of these authors proposed additions to the
tested and proven sonification frameworks, such as the inclu-
sion of noise events to the auralizations, deeper utilization of
rhythmic structures or the revival of software sonification as
a means to provide accessibility to visually impaired users.

Out of the software sonification tools that were unearthed
in our initial research efforts, the only one that attempted
to bring temporal aspects to the table was the latest version
of the CocoViz [8] tool. While this is a first effort to bring
evolutionary aspects to a software sonification tool, we find
that there’s much more that can be done by tapping into
that area’s potential.

2.3 Software Evolution
Software Evolution is elaborated on by Lehman [16] with
the following:

(...)Evolution is an intrinsic, feedback driven, prop-
erty of software. The meta-system within which
a program evolves contains many more feedback
relationships than those identified (...) Primi-
tive instincts of survival and growth result in the
evolution of stabilizing mechanisms in response
to needs, events and changing objectives.

This quotation carries two defining qualities of the process
of software evolution: 1) The existence of a meta-system,
implying that a system is never alone in its production en-
vironment but rather interacting, stimulating and receiving
feedback from other systems; 2) The evolution of stabilizing
mechanisms to make sure the system maintains its correcti-
tude after deployment even if the requirements change.

Aware of that, it becomes clear that evolutionary aspects
go far beyond tracking amount of source change between
revisions of source code file, the fact that evolution concerns
itself with the nature of the software at a meta-systemic level
shows that there are metrics at the architectural level that
should be extracted, analyzed and displayed. This high level
of abstraction, the large number of components involved in
these interactions and the temporal nature of evolution itself
make audio stand out as an efficient medium to convey this
information to the user.

3. PROPOSED APPROACH
This paper proposes a sonification framework that sonifies
software evolution by following three main steps: source
code retrieval, data extraction and sound synthesis. The

solution’s general architecture and the sonification process
are detailed in the following sections.

3.1 Proposed Architecture
Figure 1 depicts the structural (component-and-connector)
architectural view of the proposed framework, presenting
three specialized software modules and the interactions be-
tween them and their shared working set. This approach al-
lows each module to evolve and adapt independently, should
its requirements change, as long as the format of their shared
data and their communication interfaces (both module to
module and module to working set).

Another advantage of the modular approach is the possibil-
ity of reusing each of the modules for their specific purposes
in an uncoupled manner. For example, as long as the user
knows the data format used by sound renderer this module
can be used independently to auralize any given data. Simi-
larly, the metrics extractor can retrieve evolutionary metrics
from a local, previously downloaded, source code repository
for use in a completely independent fashion.

An important artifact of this architecture is the direct con-
nection between the repository browser and the metrics ex-
tractor modules, this was done to allow repository metadata
to be collected while the source code repository is trans-
versed – since such data can’t be retrieved from source code
itself. Given the importance of contextual and environmen-
tal data in evolutionary software analysis this decision is
adequate, despite making it harder to independently evolve
the repository browser module, which now has to maintain
the compatibility of one additional interface.

3.2 Source Code Retrieval
Version control systems (VCS) create repositories that store
an initial version of the source code and then successive ver-
sions of the files by using delta compression, saving only
discrete files that contain the differences between files rather
than the entire data. This allows for efficient storage and
seamless switching between different snapshots of the ver-
sioned project, each such snapshot is often called a revision.

When a developer send his proposed changes for integration
in a branch, his version control client prepares a package
of the proposed changes along with contextual information
such as author name, date, time and the author’s comments
on the changes. This package is called a commit1.

Software evolution is an inherently temporal phenomenon,
as such it’s fundamental to track the changes in a program’s
structure and code-metrics across a period of time to achieve
a proper representation of it. This involves retrieving snap-
shots of the software’s source code at different revisions, ver-
sion control systems greatly simplify this task since reposito-
ries created by such tools can be systematically transversed,
processed and compared.

In order to extract meaningful data from software reposi-
tories and generate interesting sonifications, the metrics ex-
tractor module uses filters. While the framework includes

1Not to be confused with the concept of commits for trans-
actional database systems.



Figure 1: Component and connector view of the proposed framework.

some filters to demonstrate its capabilities, the ability to
easily write and combine new filters is the highlight that al-
lows the user to transverse source code repositories in order
to achieve virtually any goal.

3.3 Data Extraction
The broad field of investigations that generally deal with
extracting data from software repositories in order to un-
cover trends, relationships and extract pertinent informa-
tion is called Mining Software Repositories (MSR), software
repositories refer, in this context, to the entirety of devel-
opment artifacts that are produced during the process of
software development and evolution, including the data in
VCS repositories, bug-tracking systems and communication
archives such as email and memos.

The content of these aggregated data sources exists for the
entirety of the software project life cycle and carry a wealth
of information that includes, but is not limited to: The ver-
sions that the system has gone through, the changes, meta-
data about the revisions of the software (as seen in 3.2), the
rationale for the projects architectural choices and discus-
sions between the projects members.

Mining data and metadata from software repositories typi-
cally serves one out of two purposes, as outlined by Kagdi,
Collard and Maletic [14]. The first purpose is described as
follows:

The first is the market-basket question (MBQ)
formulated as: if A occurs then what else occurs
on a regular basis? The answer is a set of rules
or guidelines describing situations of trends or
relationships. For example, if A occurs then B
and C happen X amount of the time.

Later in their paper, the second purpose is clarified:

The second type of MSR purpose relates to preva-
lence questions (PQ). Instances include metric

and boolean queries. For example, was a partic-
ular function added/deleted/modified? Or how
many and which of the functions are reused? The
questions asked indicate the purpose of the min-
ing approach.

Given the code base and the purpose of the MSR being un-
dertaken two main strategies to answer the proposed ques-
tions are detailed by Kagdi: One coined interested in changes
to properties dealing mostly with high-level aspects of the
software evolution and metrics computed across versions,
and a second approach that focuses on changes to artifacts
that focus on the specific differences between versions to
measure the evolutionary aspects, rather than consolidated
metrics or indexes [14].

In this proposed approach to software evolution sonification
the focus is not answering questions through MSR but rather
using it to display the software evolutionary aspects in a
timely and unobtrusive way, while mantaining a high ap-
prehension rate. The strategy we elected for processing the
data from the software repositories focuses on the changes
to properties (through metric analysis) rather than internal
measuring in order to grasp the system’s evolutionary state,
internal measuring can still be utilized if the existing are
be unable to provide one or more necessary aspects for the
desired sonification.

It is important to note that this approach doesn’t contem-
plate the specialized software evolution metrics developed
by Lehman and Ramil in [18], the rationale for that is that
those metrics focus heavily on cost-estimation and applied
aspects of project management, whereas this work focuses
on program comprehension.

3.4 Sound Synthesis
Martin Russ [20] defines Sound Synthesis as:

(...) the process of producing sound. It can reuse
existing sounds by processing them, or it can
generate sound electronically or mechanically. It



may use mathematics, physics or even biology;
and it brings together art and science in a mix of
musical skill and technical expertise(...)

Which is a broad, but sufficient definition for the purposes
of this work, in which the ultimate goal is to electronically
generate sounds that are both meaningful and musical.

4. IMPLEMENTATION
The proposed framework was developed using the Java pro-
gramming language, chosen due to its good balance of pro-
ductivity, debuggability and the pre-existence of various li-
braries and components necessary for this implementation,
the Eclipse [11] IDE for the development process because of
its good community and amount of extensions available.

The following subsections elaborate on the development de-
cisions, processes and technologies employed in each indi-
vidual module, Figures 2 to 6 depict the implementation of
the framework’s modules in order to conduct the validation
experiments detailed in Section 6, several relationships and
packages were hidden from these figures to streamline the
diagrams.

Figure 2: Package diagram for the framework.

4.1 Repository Browser
The repository browser is responsible for downloading a code
repository, and provides interfaces for transversing it, in ad-
dition to reading and writing the repository’s data and meta-
data.

While the tool’s architecture allows for VCS flexibility, Git
was chosen for the initial implementation of this work due
to its widespread adoption in open-source software (OSS)
projects and its ability to work with repository clones locally,
eliminating the overhead that is caused by having to contin-
uously retrieve version information over the network from
a centralized VCS such as Subversion. While Subversion is
better documented and more mature, the performance im-
provements and decentralized nature of Git weighted in on
the final choice.

In order to embed Git functionality in the framework, the
JGit [22] library was utilized. JGit was selected as the Git
provider due to its lightweight, good performance, low num-
ber of dependencies, good documentation and successful de-

ployment in large-scale projects such as EGit [1] and Gerrit
[2].

The highlight of the current repository browser implemen-
tation is the ability to browse the commits in different ways
through custom filtering. New filters can be created by ex-
tending from a abstract class in the framework and writing
the custom filtering logic in the abstract methods. Once
created, filters can be mixed and matched to meet the most
diverse requirements in terms of detail, levels of representa-
tion and performance.

All the code pertaining to the repository browser implemen-
tation is in the project’s repositorybrowser Java package,
depicted in detail on Fig. 3 with its internal classes, one
of which is the Commit class, which wraps around JGit’s
RevCommit class to provide some utility accessors.

The GitRepositoryHandler class is responsible for loading
a Git repository (either local or remote), with the added
ability to download remote repositories into local clones.
The class provides the getRevisions and getAllRevisions
methods to retrieve revisions from the loaded repository
with or without filtering, respectively.

The CommitFilter abstract class provides the basis for the
creation of custom commit filters. It does most of the generic
filtering logic in itself, does some safety checks (for instance,
makes sure that the child classes are calling it’s constructor
correctly) and declares the abstract method doFilterCommit
which custom filters must use to implement their custom fil-
tering logic, the custom filtering logic for one such filter is
shown in Code Listing 1.

Code Listing 1: Custom filtering logic for the
StepCommitFilter class.

public void doFilterCommit() {
RevCommitList<RevCommit> filteredCommits = new

RevCommitList<RevCommit>();
RevCommitList<RevCommit> commits = this.

getCommits();
Integer step = (Integer) this.getArgs()[0];

if (step > commits.size()) {
filteredCommits.add(commits.get(0));
filteredCommits.add(commits.get(commits.size

() − 1));
} else {

for (int i = 0; i < commits.size(); i += step
) {

RevCommit revCommit = commits.get(i);
filteredCommits.add(revCommit);

}
if (commits.size() % step != 0) {

filteredCommits.add(commits.get(commits.
size() − 1));

}
}

this.setCommits(filteredCommits);
}

From this listing, two important implementation details can
be noted: first, the filter receives the arguments as an ar-



Figure 3: Diagram for the repositorybrowser package and its classes.

ray of Object (declared by the base class in order to allow
flexibility) and therefore, its up to the programmer to type-
check and document the number and type of the arguments
that his custom filter takes as input; second, the method
setCommits must be called at the end of the filtering pro-
cess, in order to set the instance’s commits property with
the filtered commits and maintain the getFilteredCommits
method as the sole outlet for the filtering operations.

4.2 Metrics Extractor
The metrics extractor retrieves information from a given
source code revision and collects metadata from the repos-
itory and source code while the repository browser goes
through the repository.

In the preliminary studies, both GCC-XML [13] and Clang
[10] were considered as potential tools for metrics extraction.
Further investigation revealed that, given the diversity and
heterogeneity of software metrics that can be collected, its
more productive to have the custom logic for each desired
metric in its own class, and have the framework deploy the
implemented metrics through inversion of control.

Custom logic for metrics dealing with metadata and contex-
tual information can be written in terms of the language’s
constructs, while metrics that deal with static source code
analysis should be retrieved through the invocation third
party tools, and turned into evolutionary metrics through
the addition of a temporal aspect. The variation for a given
metric can be calculated across different source code revi-
sions in order to entail evolutionary insight.

As seen in Figure 4, the framework includes two concrete
classes that implement the IMetricsExtractor interface in
order to extract two evolutionary metrics from the software
repository’s metadata: CommittersPerMonthExtractor re-
trieves the number of committers active per month while
CommitsPerMonthExtractor calculates the total number of
commits per month, these two metrics combined provide a
good grasp of a software project’s overall activity and ten-
dency. Depending on what analysis the user wants to per-
form, the extracted metrics can be processed either raw to
show disparities in projects’ magnitudes or interpolated to
place give both projects under a similar perspective. The
complete source code for the CommittersPerMonthExtractor
class is included in Appendix A.

The metrics extractor classes return, through the getMetrics
method, a collection of key-value pairs with string identifiers
and integer values, the getOutputName method, in turn, re-
turns a string with the name the map should ba called by in
the sonification templates (discussed in the next subsection).

4.3 Sound Renderer
After extracting the chosen metrics from the filtered re-
visions, a comprehensive mapping can be elaborated be-
tween the software metrics collected and the various aural
events that will be defined according to the guidelines al-
ready present in the software sonification literature. Both
musicality [27] and comprehensibility [24] of the auditory
are taken into consideration.

The sound rendering module associates one or more sets



Figure 4: Diagram for the metricsextractor package and its classes.

Figure 5: Diagram for the soundrenderer package and
its sole class.

of consolidated metrics with one or more auralization tem-
plates to generate a MIDI music file that can be read by
regular media players, two additional tools are used in this
process: the Freemarker template engine [19] and the Lily-
pond music notation tool [17].

Freemarker processes both the metrics and the template
(.ftl) files, outputting a Lilypond (.ly) that defines what
sounds should be rendered. This file contains musical notes
and additional information such as tempo, pitch and dy-
namics. Lilypond further processes the expanded .ly file and
generates a MIDI sound file in addition to a PDF file with
the corresponding music sheet.

The soundrenderer package (Figure 5) contains one single
SoundRenderer class that generates the sonification through
the Render method. Given the name of the template file, a
map of maps containing the extracted metrics and, option-
ally, a filename for the output files, the class writes PDF,

Lilypond and MIDI files in it’s working directory. This im-
plementation itself is very straightforward and the its most
notable implementation detail is that it depends on Lilypond
being installed and set up on the system’s path as shown in
Code Listing 2.

Code Listing 2: SoundRenderer’s Render method.
public void Render(String templateName, Map<String,

Map> data,
String fileName) throws IOException,

TemplateException {
Configuration cfg = new Configuration(Configuration

.VERSION_2_3_20);
cfg.setDirectoryForTemplateLoading(new File("./

templates"));
cfg.setDefaultEncoding("UTF−8");
cfg.setTemplateExceptionHandler(

TemplateExceptionHandler.RETHROW_HANDLER);

Template temp = cfg.getTemplate(templateName + ".
ftl");

FileWriter fr = new FileWriter("./" + fileName + ".
ly", false);

temp.process(data, fr);
Runtime.getRuntime().exec("lilypond " + fileName +

".ly");
}

The sonification template bundled with the framework maps
the default metrics, namely: the number of commits per
month and number of committers per month to, respectively,
the pitch and the number of notes that correspond to each
month in the rendered sonification.

4.4 Application Core



The application core is responsible for communicating the
specialized modules of the framework and providing an en-
try point for users that aren’t particularly interested in ex-
tending the framework’s capabilities, allowing them to work
with whatever filters and metrics extractors are already im-
plemented.

The WorkingSet class performs the data transfer operations
needed by the framework. It takes user-provided informa-
tion such as the source code repository’s url and passes that
on to the appropriate classes, provides methods to set-up
filters, extractors and parameters and also provides an in-
terface for the user to access all the individual modules and
parameters involved in the sonification process.

The Maestro class does the actual execution of the sonifi-
cation process, it knows the sonification procedure, while
the WorkingSet class holds the assets and data necessary to
undertake the task.

Each Maestro instance is initialized with a WorkingSet in-
stance and provides no accessors to its internal fields (Figure
6), encouraging users to properly configure the working sets
before passing them for sonification.

The makeMusic method in the Maestro class is the single en-
try point for the sonification process in the entire framework,
while maintaining a very simple and efficient implementa-
tion (shown in Code Listing 3), this was achieved through
meticulous encapsulation and consideration of the single re-
sponsibility principle throughout the framework.

Code Listing 3: Maestro class makeMusic method.

public void makeMusic() throws NoHeadException,
GitAPIException,

IOException, TemplateException {
GitRepositoryHandler handler = this.ws.

getRepoHandler();
ArrayList<Commit> commits = new ArrayList<Commit

>();
commits = handler.getRevisions(this.ws.

getFilters());

Map<String, Map> data = new TreeMap<String, Map
>();

for (IMetricsExtractor extractor : this.ws.
getExtractors()) {

data.put(extractor.getOutputName(), extractor
.getMetrics(commits));

}

// This a set that maps numbers to musical notes
data.put("noteMap", NoteMap.getInstance());

if (this.ws.getFileName() != null) {
this.ws.getSoundrenderer().Render(this.ws.

getTemplateName(), data,
this.ws.getFileName());

} else {
this.ws.getSoundrenderer().Render(this.ws.

getTemplateName(), data);
}

}

Figure 6: Detail of the classes contained by the core
package.

5. RELATED WORK
Works that attempt to employ and evaluate sonifications
in order to help specifically with program comprehension
date back as far as 1990, as shown in Table B.5, this sec-
tion presents next a brief timeline considering some of such
works, followed by a brief discussion of their confluence and
their differences to the current work.

Sonnenwald et al. proposed, in 1990, the InfoSound [23]
tool in order to help subjects understand rapidly succeeding
events in software behavior though sonifications, and pro-
vided enough validation in their studies to support the tool;
Francioni and Jackson, in 1993, furthered the studies in be-
havioral software sonification by focusing on programs with
parallel execution [12], and determined that users could cor-
rectly identify entities through sounds alone.

From 1998 to 2002, Vickers and Alty published works that
sonified code structure as well as it’s behavior, ran experi-
ments to evaluate the tools didactically and musically and



also worked towards organizing some principles for musi-
cal program auralizations. Vickers also proposed, on his
1996 PhD thesis [26], the CAITLIN tool for auralization of
software behavior and structure, validated by a controlled
experiment performed with novice pascal developers.

While there were significant studies all throughout, the first
tool to include evolutionary aspects in software sonifications
was CocoViz, and only moderately so. Bocuzzo and Gall, in
their 2008 publication [9], explain that CocoViz tracks the
percentile change of an entity in a period of time and uses
auditory cues to alert when it changes more than a defined
threshold, while this may look like a simple sonification ef-
fort, controlled experiments in the same study highlighted
the efficacy of these auditory cues.

All of these publications, along with the additional works
presented in Table B.5 contributed to our effort by laying
the foundations necessary to begin sonification work and
providing initial insights on what works and what doesn’t
when trying to convey technical information to the user,
with both theoretical and practical arguments to corrobo-
rate their claims.

Despite all the considerable efforts in the field, the evolution-
ary aspects of computer programs is severely less explored if
compared to behavioral and structural aspects. The present
work attempts to build upon the existing bibliography by
bringing more emphasis to the evolution of software projects,
presenting several methodological guidelines for evolution-
ary sonification and a lean and flexible sonification frame-
work.

6. VALIDATION
In order to evaluate the proposed framework, a case study
was conducted. The experimental procedure, their goals and
our findings will be detailed in the following subsections.

6.1 Case Study
6.1.1 Goals

The case study was undertaken in order to assert whether or
not the sonifications rendered from evolutionary data from
source-code repositories are meaningful and easily under-
stood.

Additionally, this case study helps determine whether or not
the basic implementation of the framework has enough as-
sets to render useful sonifications by itself.

6.1.2 Procedure
For this case study, two open-source office suites were se-
lected as subjects: The KOffice suite – whose developed
ceased in 2013 and the Libreoffice suite – whose develop-
ment is still well underway and is largely utilized by the
open-source community.

Evolutionary sonifications were rendered for both suites fac-
toring in the code revisions in the period between 01/01/2010
and 31/04/2013, inclusively. The finish date for the sonifi-
cation period corresponds to the month before the last non-
automatic commit of the KOffice project, because KOffice’s

activity ceased midway through the month, whereas Libre-
office continued all throughout.

A simple runner class with an associated GUI (Graphical
User Interface) was put together to conduct this study, the
interface consists of an editable text field and a button that
invokes the sonification process (Code Listing 4).

Figure 7: Graphical User Interface of the runner
class.

Code Listing 4: Excerpt of the method invoked by
the GUI after a click event is registered.

SimpleDateFormat dateFormat = (SimpleDateFormat)
DateFormat
.getDateInstance();

dateFormat.applyPattern("dd/MM/yyyy");

Object[] dates = { dateFormat.parse("01/01/2013"),
dateFormat.parse("31/12/2014") };

WorkingSet ws = new WorkingSet("template_bassline");
ws.initRepoHandler(txtRepoURL.getText());
ws.setFilter(new DateCommitFilter(dates, ws

.getRepoHandler().getAllRevisions(true)));

ws.putExtractor(new CommitsPerMonthExtractor());
ws.putExtractor(new CommittersPerMonthExtractor());

Maestro vivaldi = new Maestro(ws);
vivaldi.makeMusic();

The monthly number of commits in each project was mapped
to the pitch representing that specific month, while the num-
ber of committers for a given month corresponded to the
number of notes it lasts for, as specified by the default tem-
plate file. The extracted data was interpolated to make sure
the minimum and maximum number of commits correspond
to the pitches of C2 (two octaves below the middle C) and
C8 (four octaves above the middle C), while the minimum
and maximum number of committers correspond to, respec-
tively, 2 and 8 notes; such interpolation strategy was de-
ployed in the extractor classes to represent both projects in
a similar perspective, even through their numbers were in
slightly different orders of magnitude.

The finished sonifications were qualitatively analyzed in or-
der to determine if the desired mappings were correctly re-
produced in the sonification, if both projects were repre-
sented in a similar fashion, and if it’s possible to get an
insight on the project’s health and activity through sonifi-
cation alone. The raw data – extracted in the second part of
the sonification process – can be found in Tables B.1, B.2,
B.3 and B.4, all in Appendix B.

6.1.3 Results
Despite the project’s numbers being in different orders of
magnitude (Libreoffice has always had a lot more activ-



ity than KOffice), the sonifications were able to represent
both projects in a comparable scale, the musical scores cor-
responding to each of the rendered sonifications can be seen
in Appendix C, Figures C.1 and C.2, as a printed alternative
to the sonification experience.

Through analysis of the sonifications, some conclusions were
drawn: first, it is possible to coherently map data to aural
events; second, through sonification it’s possible to analyze
large and small software projects under a similar perspec-
tive, preserving the evolutionary trends of each project and
investing roughly the same amount of effort for each project.

From an evolutionary standpoint, the sonifications evidenced
what could be an important pattern. In KOffice’s sonifica-
tion there were mostly extreme frequencies, meaning that
there were many moments of heavy development and long
periods of very modest development. In contrast, Libre-
office’s sonification had mostly moderate frequencies, with
the pitches varying in a roughly wavelike pattern, even in its
most extreme moments, meaning that development sprints
were cyclical and well-defined.

7. CONCLUSION
Visualization solutions to aid software developers compre-
hend computer programs suffer from the same scalability
problem as program comprehension itself, their represen-
tations get exponentially more confusing and complex as
the project’s complexity and size increase. Given the room
for improvement left by the current tools, their consider-
able success in aiding developers and their shortcomings,
it’s reasonable to prospect other mediums to aid in program
comprehension.

This work draws from studies in the established areas of
SMC, Auditory Display and Software Evolution in order to
propose and detail a methodology and a extensible frame-
work to convey evolutionary software information through
sound alone.

The validation employed shows that sonifications are not
only able to transmit evolutionary information to the user,
but also escalate very well with the size and complexity of
the software projects involved, theoretically requiring the
same amount of training, time and effort regardless of the
software being analyzed.

The results obtained here hint at the potential of this ap-
proach. Future publications planned in this field of research
include a systematic literature review of software sonifica-
tion for program comprehension, which was performed in
tandem with this article and experimental studies to further
validate the solution.

8. REFERENCES
[1] Egit - eclipse team provider for git.

http://eclipse.org/egit/.

[2] Gerrit code review. https://code.google.com/p/gerrit/.

[3] Max-msp. http://cycling74.com/products/max/.
Accessed: 16/07/2014, 2014.

[4] Berman, L. Program Comprehension Through
Sonification. PhD thesis, Durham University, 2011.

[5] Bernardini, N., and de Poli, G. The sound and

music computing field: Present and future. Journal of
New Music Research 36, 3 (2007), 143–148.

[6] Bly, S. Presenting information in sound. In
Proceedings of the 1982 Conference on Human Factors
in Computing Systems (New York, NY, USA, 1982),
CHI ’82, ACM, pp. 371–375.

[7] Bly, S. Sound and Computer Information
Presentation. PhD thesis, 1982. AAI8220127.

[8] Boccuzzo, S., and Gall, H. C. Cocoviz with
ambient audio software exploration. In Proceedings of
the 31st International Conference on Software
Engineering (Washington, DC, USA, 2009), ICSE ’09,
IEEE Computer Society, pp. 571–574.

[9] Bocuzzo, S., and Gall, H. Software visualization
with audio supported cognitive glyphs. In 2008 IEEE
International Conference on Software Maintenance
(2008).

[10] C language family frontend for llvm.
http://clang.llvm.org/index.html. Accessed:
08/04/2014, 2003-2013.

[11] Foundation, E. Eclipse. http://eclipse.org/.

[12] Francioni, J., and Jackson, J. Breaking the
silence: Auralization of parallel program behavior.
Journal of Parallel and Distributed Computing 18, 2
(1993), 181 – 194.

[13] Xml output for gcc. http://gccxml.github.
io/HTML/Index.html. Accessed: 08/04/2014,
2002-2012.

[14] Kagdi, H., Collard, M. L., and Maletic, J. I. A
survey and taxonomy of approaches for mining
software repositories in the context of software
evolution, 2007.

[15] Kazuya, S., Shigeyuki, H., Kazutaka, M., and
Minoru, T. Codedrummer: Sonification methods of
function calls in program execution. IPSJ SIG Notes
2011, 14 (feb 2011), 1–6.

[16] Lehman, M. M. On understanding laws, evolution,
and conservation in the large-program life cycle. J.
Syst. Softw. 1 (Sept. 1984), 213–221.

[17] Nienhuys, H.-W., and Nieuwenhuizen, J. Gnu
lilypond. http://lilypond.org/, 1996–2015.

[18] Ramil, J., and Lehman, M. Metrics of software
evolution as effort predictors - a case study. In
Software Maintenance, 2000. Proceedings.
International Conference on (2000), pp. 163–172.

[19] Revusky, J., Szegedi, A., and Dékány, D.
Freemarker. http://freemarker.org/, 2002–2015.

[20] Russ, M. Chapter 1 - background. In Sound Synthesis
and Sampling (Third Edition), M. Russ, Ed., third
edition ed., Music Technology. Focal Press, Oxford,
2009, pp. 3 – 86.

[21] Scheirer, E. D. The mpeg-4 structured audio
standard, 1998.

[22] Sohn, M., and Pearce, S. Jgit.
https://eclipse.org/jgit/, 2010–2015.

[23] Sonnenwald, D. H., Gopinath, B., Haberman,
G. ., Keese, W. M., and Myers, J. S. Infosound:
An audio aid to program comprehension. In System
Sciences, 1990., Proceedings of the Twenty-Third
Annual Hawaii International Conference on (1990).

[24] Stefik, A., Hundhausen, C., and Patterson, R.



An empirical investigation into the design of auditory
cues to enhance computer program comprehension.
International Journal of Human-Computer Studies
(2011).

[25] Vercoe, B. The canonical csound reference manual,
1992.

[26] Vickers, P. CAITLIN : implementation of a musical
program auralisation system to study the effects on
debugging tasks as performed by novice Pascal

programmers. PhD thesis, Loughborough University,
1999.

[27] Vickers, P., and Alty, J. Towards some organising
principles for musical program auralisations. In
Proceedings of the Fifth International Conference on
Auditory Display (1998).

[28] Vickers, P., and Alty, J. L. Musical program
auralisation: a structured approach to motif design.
Interacting with Computers 14, 5 (2002), 457 – 485.



APPENDIX

A. CODE LISTINGS

Code Listing A.1: Source code for the CommittersPerMonthExtractor class.
public class CommittersPerMonthExtractor implements IMetricsExtractor {

public CommittersPerMonthExtractor() {
}

@Override
public Map<String, Integer> getMetrics(ArrayList<Commit> commits) {

TreeMap<String, Integer> committersMonth = new TreeMap<>();
TreeMap<String, LinkedHashSet<String>> committersMonthTemp = new TreeMap<>();

for (Commit commit : commits) {Concrete
@SuppressWarnings("deprecation")
String key = ""

+ (commit.getHumanDate().getYear() + 1900)
+ "/"
+ Integer

.toHexString((commit.getHumanDate().getMonth() + 1));
if (committersMonthTemp.containsKey(key)) {

committersMonthTemp.get(key).add(commit.getCommiter());
} else {

LinkedHashSet<String> temp = new LinkedHashSet<String>();
temp.add(commit.getCommiter());
committersMonthTemp.put(key, temp);

}
}

Iterator<Entry<String, LinkedHashSet<String>>> iteTemp = committersMonthTemp
.entrySet().iterator();

// Setting the actual committers/month value
while (iteTemp.hasNext()) {

Entry<String, LinkedHashSet<String>> atual = iteTemp.next();
committersMonth.put(atual.getKey(), atual.getValue().size());

}

Iterator<Entry<String, Integer>> ite = committersMonth.entrySet()
.iterator();

// Ppm = People per month
int minPpm = Integer.MAX_VALUE;
int maxPpm = Integer.MIN_VALUE;

while (ite.hasNext()) {
Entry<String, Integer> atual = ite.next();
int atualInt = atual.getValue();
if (atualInt < minPpm) {

minPpm = atual.getValue();
}
if (atualInt > maxPpm) {

maxPpm = atual.getValue();
}

}

Interpolator interpolator = new Interpolator(2, 8, minPpm, maxPpm);

ite = committersMonth.entrySet().iterator();
while (ite.hasNext()) {

Entry<String, Integer> current = ite.next();
current.setValue(interpolator.interpolate(current.getValue()));

}
return committersMonth;

}

@Override
public String getOutputName() {

return "committersMonth";
}

}



B. TABLES
Table B.1: KOffice – Committers per month.

Table B.2: KOffice – Commits per month.



Table B.3: Libreoffice – Committers per month.

Table B.4: Libreoffice – Commits per month.



Table B.5: Extracted data from works unearthed during the literature review process
Title Author(s) Year Sonification Goal Sonified Aspect

InfoSound: an audio aid to
program comprehension

Sonnenwald, D.
Haberman, O.

Keese, W.
Myers J. S.

1990
Program

Comprehension
Behavior

Breaking the Silence: Auralization
of Parallel Program Behavior

Francioni, J.
Jackson, J.

1993
Program

Comprehension
Behavior

Towards some Organising Principles
for Musical Program Auralisations

Vickers, P.
Alty, J.

1998

Debugging
Assistance

Program
Comprehension

Structure

Behavior

CAITLIN: implementation of a musical program
auralisation system to study the effects on

debugging tasks as performed by novice
Pascal programmers

Vickers, P. 1999

Debugging
Assistance

Program
Comprehension

Structure

Behavior

Musical Program Auralisation:
Empirical Studies

Vickers, P.
Alty, J.

2000

Debugging
Assistance

Program
Comprehension

Structure

Behavior

Using music to communicate
computing information

Vickers, P.
Alty, J.

2002
Program

Comprehension

Structure

Behavior
An Empirical Comparison Of

Program Auralization Techniques
Stefik, A. 2005

Debugging
Assistance

Behavior

A Tool For Auralized Debugging Chen, Y. 2005

Debugging
Assistance

IDE Extension

Behavior

Listening to Program Slices
Berman, L.

Gallhager, K.
2006

Program
Comprehension

Structure

The Well-tempered Compiler?
The Aesthetics of Program Auralization.

Vickers, P.
Alty, J.

2006 Aesthetics
Structure

Behavior

On the role of senses in education
Kátai, Z.

Juhász, K.
Adorjáni, A.

2008 Teaching Structure

Software visualization with audio
supported cognitive glyphs

Bocuzzo, S.
Gall, H.

2008
Program

Comprehension

Structure

Evolution
CocoViz with ambient

audio software exploration
Bocuzzo, S.

Gall, H.
2009

Program
Comprehension

Structure

Using Sound to Understand
Software Architecture

Berman, L.
Gallhager, K.

2009

Program
Comprehension

IDE Extension

Structure

Sonification Design Guidelines
to Enhance Program Comprehension

Hussein, K.
Tilevich, E.
Bukvic, I.
Kim, S.

2009

Program
Comprehension

IDE Extension

Structure

Sound as an Aid in Understanding
Low-Level Program Architecture

Berman, L. 2010
Program

Comprehension
Structure

Program Comprehension
Through Sonification

Berman, L. 2011

Program
Comprehension

IDE Extension

Structure

An empirical investigation
into the design of auditory cues
to enhance computer program

comprehension

Stefik, A.
Hundhausen, C.

Patterson, R.
2011

Debugging
Assistance

Program
Comprehension

IDE Extension

Structure

Behavior

CodeDrummer: Program audible
system in which attention is focused

on the rhythm (machine translated title)

Kazuya, S.
Shigeyuki, H.
Kazutaka, M.

Minoru, T.

2011

Program
Comprehension

Entertainment

Behavior



C. MUSICAL SCORES

Figure C.1: Musical score for KOffice’s evolutionary sonification.



Figure C.2: Musical score for Libreoffice’s evolutionary sonification.


